Section 5.1 Areas and Distances

(1) The Area Problem
 (2) The Distance Problem
 (3) Summation Notation

h Phillip Brennan Jila Niknejad

Area

Area is a measure of the size of 2-dimensional shapes.

Area is preserved under cutting, gluing, sliding, and rotating.

There are standard formulas for the areas of common shapes:

Rectangle:
$$A = bh$$
 Triangle: $A = \frac{1}{2}bh$ **Circle:** $A = \pi r^2$

But what about more complicated shapes?

The motivation for this chapter is the problem of calculating the area of more general regions, such as the area under the graph of a function y = f(x).

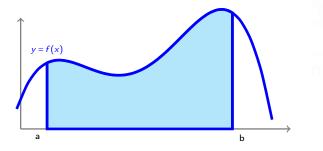
When we studied tangent lines, we soon discovered that we needed to use limits to calculate them in a mathematically rigorous way. This led to the concept of a derivative.

Similarly, calculating area in a rigorous way will also require limits and will lead us to a new mathematical concept: the **integral**.

The Area Problem

Let f(x) be continuous and positive on a closed interval [a, b].

What is the area of the region bounded by the graph of f(x), the vertical lines x = a and x = b, and the x-axis?



The Area Problem

The area A under the graph of f between x = a and x = b can be approximated as the total area of n rectangles.

- Divide the domain [a, b] into *n* segments of length $\Delta x = \frac{b-a}{n}$.
- Inside each segment, choose a value x_i.
- Form a rectangle of height $f(x_i)$ on each segment.

Then $A \approx f(x_1)\Delta x + f(x_2)\Delta x + \ldots + f(x_n)\Delta x$.

by Joseph Phillip Brennan Jila Niknejad

Example 1: Approximate the area under $y = x^2$ on [1,4] using 6 segments. Here a=1, b=4, n=6, and $\Delta x = \frac{b-a}{n} = \frac{1}{2}$. The 6 segments of the domain are [1,1.5] [1.5,2] [2,2.5] [2.5,3] [3,3.5] [3.5,4]

 $x_i =$ right endpoint of i^{th} interval:

- i	×i	$f(x_i)$	$f(x_i)\Delta x$
1	1.5	2.25	1.125
2	2	4	2
3	2.5	6.25	3.125
4	3	9	4.5
5	3.5	12.25	6.125
6	4	16	8
		Area ≈	24.875

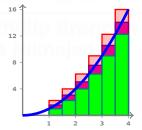
Choice of x _i	Estimate of area
Right endpoints	24.875 (too high)
Left endpoints	17.375 (too low)
Midpoints	20.9375 (closest)

 $x_i =$ left endpoint of i^{th} interval:

i	×i	$f(x_i)$	$f(x_i)\Delta x$
1	1	1	0.5
2	1.5	2.25	1.125
3	2	4	2
4	2.5	6.25	3.125
5	3	9	4.5
6	3.5	12.25	6.125
		Area ≈	17.375

 $x_i =$ midpoint of i^{th} interval:

- i	×i	$f(x_i)$	$f(x_i)\Delta x$
1	1.25	1.5625	0.78125
2	1.75	3.0625	1.53125
3	2.25	5.0625	2.53125
4	2.75	7.5625	3.78125
5	3.25	10.5625	5.28125
6	3.75	14.0625	7.03125
		Area ≈	20.9375



KU KANSAS

Area Expressed as a Limit

The area A under the graph of f between x = a and x = b can be approximated as the total area of n rectangles:

$$A \approx \overbrace{f(x_1)\Delta x + f(x_2)\Delta x + \ldots + f(x_n)\Delta x}^{R_n}$$

As *n* gets larger and larger, the approximation R_n gets better and better.

Joseph Phillip Brennan Jila Nikoeiad

The exact area is given by a limit.

The **area** A under the graph of a continuous function f between x = a and x = b equals the limit of the sum of the areas of approximating rectangles:

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} (f(x_1)\Delta x + f(x_2)\Delta x + \ldots + f(x_n)\Delta x)$$

Calculating Distance

Let v(t) be the velocity of an object at time t.

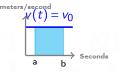
The area under the graph of v(t) on a time interval [a, b] measures the net distance traveled, or displacement, between times a and b.

Note that the units:

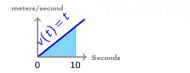
Units of area under the graph of v(t) = units of $t \times$ units of v(t)

$$= time \times \frac{distance}{time}$$
$$= distance.$$

Example 2(a): If $v = v_0$ on [a, b], then the region under the graph is a rectangle with area $v_0(b-a)$.



Example 2(b): An object starts at rest and accelerates at a constant rate of 1 m/s^2 for 10 seconds. Then v(t) = t m/s. Displacement = area under the curve = $\frac{1}{2}(10 \text{ s})(10 \text{ m/s}) = 50 \text{ m}$.



Example 3: You are driving across Missouri. In order to stay awake, you estimate how far you have traveled from your speedometer readings:

2:00 PM	70 mph (the speed limit)	
2:15 PM	65 mph (up a small hill)	
2:30 PM	75 mph (down the hill)	
2:45 PM	55 mph (careful, is that a speed trap?)	
3:00 PM	80 mph (vroom!)	

You can now estimate¹ the maximum and minimum possible distance you have traveled during this hour:

Max: $\frac{1}{4}(70) + \frac{1}{4}(75) + \frac{1}{4}(75) + \frac{1}{4}(80) = 75$ miles Min: $\frac{1}{4}(65) + \frac{1}{4}(65) + \frac{1}{4}(55) = 60$ miles

The actual distance traveled is somewhere between these two estimates.

 $^{^1}$ Assuming that in each 15-minute interval, your max and min speeds occur at the endpoints.

Summation Notation

We have encountered expressions like

$$f(x_1)\Delta x + f(x_2)\Delta x + \ldots + f(x_n)\Delta x$$

that are sums of many similar-looking terms. We need a notation for writing sums in a compact form.

Summation Notation

The notation $\sum_{j=m}^{n} a_j$ means $a_m + a_{m+1} + a_{m+2} + \ldots + a_{n-1} + a_n$.

- \sum is the Greek letter Sigma (mnemonic for "sum.")
- The notation $\sum_{j=m}^{n}$ tells us to start at j = m and to end at j = n.
- a_j is called the general term and j is the summation index.

Summation Notation

The notation $\sum_{j=m}^{n} a_j$ means $a_m + a_{m+1} + a_{m+2} + \ldots + a_{n-1} + a_n$.

Examples:

$$\sum_{j=1}^{100} j = 1 + 2 + 3 + \dots + 100$$
$$\sum_{j=4}^{785} j^2 = 4^2 + 5^2 + \dots + 785^2$$
$$\sum_{j=4}^{6} (j^3 - j - 1) = (4^3 - 4 - 1) + (5^3 - 5 - 1) + (6^3 - 6 - 1)$$

Summation Notation and Area

Summation Notation

The notation $\sum_{j=m}^{n} a_j$ means $a_m + a_{m+1} + a_{m+2} + ... + a_{n-1} + a_n$.

Therefore, our estimate for the area under the graph of a continuous, positive function f(x) on an interval [a, b] is

$$R_n = f(x_1)\Delta x + \ldots + f(x_n)\Delta x = \sum_{j=1}^n f(x_j)\Delta x$$

and the exact area is

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} (f(x_1)\Delta x + \dots + f(x_n)\Delta x)$$
$$= \lim_{n \to \infty} \sum_{j=1}^n f(x_j)\Delta x.$$

Properties of Summations

If you understand addition, you understand summation!

$$\sum_{j=m}^{n} (a_j \pm b_j) = \left(\sum_{j=m}^{n} a_j\right) \pm \left(\sum_{j=m}^{n} b_j\right)$$
$$\sum_{j=m}^{n} (ca_j) = c \sum_{j=m}^{n} a_j \qquad (\text{for any constant } c)$$
$$\sum_{j=m}^{n} c = c(n-m+1)$$

Properties of Summations

For example:

$$\sum_{j=1}^{1000} (3j^2 - 5j + 3) = \left(\sum_{j=1}^{1000} 3j^2\right) - \left(\sum_{j=1}^{1000} 5j\right) + \left(\sum_{j=1}^{1000} 3j^2\right) = 3\left(\sum_{j=1}^{1000} j^2\right) - 5\left(\sum_{j=1}^{1000} j\right) + 3000$$

Fortunately, there are nice formulas for the sum of the first n numbers, squares, cubes, fourth powers, ...

Summation Formulas

•
$$\sum_{j=1}^{n} j = 1 + 2 + \dots + (n-1) + n = \frac{n(n+1)}{2}$$

• $\sum_{j=1}^{n} j^2 = 1^2 + 2^2 + \dots + (n-1)^2 + n^2 = \frac{n(n+1)(2n+1)}{6}$
• $\sum_{j=1}^{n} j^3 = 1^3 + 2^3 + \dots + (n-1)^3 + n^3 = \frac{n^2(n+1)^2}{4}$

You don't have to memorize these formulas, but the first one has a very elegant explanation!

The Sum of the First *N* Integers

$$1+2+...+N=\frac{N\times(N+1)}{2}$$

The Sum of the Cubes of the First N Integers

